Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
2 Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5005, Australia
3 ARC Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA 5005, Australia
4 Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
5 Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
6 e-mail: dxyang@nwpu.edu.cn
Plasmonic devices using periodic metallic nanostructures have recently gained tremendous interest for color filters, sensing, surface enhanced spectroscopy, and enhanced photoluminescence, etc. However, the performance of such plasmonic devices is severely hampered by the solid substrates supporting the metallic nanostructures. Here, a strategy for freestanding metallic nanomembranes is introduced by taking advantages of hollow substrate structures. Large-area and highly uniform gold nanomembranes with nanohole array are fabricated via a flexible and simple replication-releasing method. The hollow structures include a hollow core fiber with 30 μm core diameter and two ferrules with their hole diameter as 125 and 500 μm, respectively. As a proof-of-concept demonstration, 2 times higher sensitivity of the bulk refractive index is obtained with this platform compared to that of a counterpart on a solid silica substrate. Such a portable and compact configuration provides unique opportunities to explore the intrinsic properties of the metal nanomembranes and paves a new way to fabricate high-performance plasmonic devices for biomolecule sensing and color filter.
Photonics Research
2020, 8(11): 11001749
乔文 1,2,*高社成 1,2雷霆 1,2吉虹 3[ ... ]袁小聪 1,2
作者单位
摘要
1 深圳大学纳米光子学研究中心, 广东 深圳 518060
2 深圳大学光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
3 阿德莱德大学光子和先进传感器研究所, 阿德莱德 5005
研究了轨道角动量(OAM)模式在柚子型微结构光纤(MOF)中的传输。光纤纤芯周围存在一层直径为3 μm的柚子型空气孔, 由于空气孔与光纤纤芯之间存在较大的折射率差, 传输的光被局限在纤芯中, 从而形成稳定的传输模式。通过有限元法对光纤中的矢量本征模式进行模拟, 得到了模式的有效折射率和模场分布。结果表明, MOF在630 nm波长附近可支持10个OAM模式传输, 各模式间的有效折射率差达到0.01以上,较大的有效折射率差可抑制光纤中各模式间的相互耦合, 从而提高OAM模式在光纤中的传输性能。实验中利用特殊设计的光学旋涡达曼光栅对在光纤中传输1 m的OAM1,1和OAM-1,1模式进行解调。
光纤光学 轨道角动量 有限元法 柚子型微结构光纤 有效折射率差 模式传输 
中国激光
2017, 44(4): 0406002
作者单位
摘要
The Australian Photonics Cooperative Research Center Laser Physics Centre, The Australian National University, Canberra ACT 0200 Australia
光学学报
2003, 23(s1): 363

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!